Ett annat sätt att se skolverkets uppgifter

Matematik – fortsättning Nivå 2 (MATO2000X)

Information

Läroplan

  • Namn: Gymnasieskolan, GY25
  • Gäller från: 2025-07-01
  • Senast ändrad: Ej angivet
  • Grundförfattning: Ej angivet
  • Ändringsförfattning: Ej angivet

Om nivån i ämnet

Undervisningen i ämnet matematik – fortsättning på nivå 2 ska behandla följande centrala innehåll:

Aritmetik, algebra och funktioner

  • Begreppen imaginära enheten, komplexa tal och komplexa talplanet. Representation av komplexa tal i rektangulär och polär form. Metoder för beräkningar med komplexa tal, däribland beräkning av konjugat och absolutbelopp.
  • Metoder för att faktorisera polynom. Användning av faktorsatsen för att lösa polynomekvationer.
  • Metoder för att bestämma även komplexa lösningar till andragradsekvationer, potensekvationer och polynomekvationer.
  • Fördjupning av funktionsbegreppet, däribland sammansatta funktioner, logaritmfunktioner, linjära asymptoter och skissning av grafer för hand.
  • Motivering och hantering av deriveringsregler för logaritmfunktioner, sammansatta funktioner samt produkt och kvot av funktioner.
  • Användning av integraler i mer komplexa sammanhang, till exempel täthetsfunktioner, sannolikhetsfördelning, rotationsvolymer och beräkning av storheter.

Trigonometri

  • Hantering av trigonometriska uttryck. Bevis och hantering av trigonometriska identiteter, däribland trigonometriska ettan och additionsformler.
  • Egenskaper hos trigonometriska funktioner, däribland period, amplitud och fasförskjutning. Metoder för att bestämma trigonometriska funktioner. Metoder för att lösa trigonometriska ekvationer.
  • Begreppet radian.
  • Motivering och hantering av deriveringsregler för sinus-, cosinus- och tangensfunktioner.
  • Motivering och hantering av metoder för att bestämma integraler för sinus- och cosinusfunktioner.

Digitala verktyg

  • Användning av digitala verktyg, även symbolhanterande, för att effektivisera beräkningar och komplettera metoder, till exempel vid ekvationslösning, derivering, integrering, hantering av algebraiska uttryck och problemlösning.
  • Användning av programmering som verktyg vid problemlösning, databearbetning eller tillämpning av numeriska metoder.

Problemlösning och tillämpningsområden

  • Problemlösning med särskild utgångspunkt i utbildningens karaktär och samhällsliv, däribland frågeställningar som berör hållbar utveckling och hur matematik kan användas för kritisk granskning av fakta och påståenden.
  • Tillämpning och formulering av matematiska modeller i realistiska situationer. Utvärdering av matematiska modellers egenskaper och begränsningar.
  • Orientering om något ur matematikens historia, till exempel hur ett matematiskt begrepp utvecklats, matematikens roll i något historiskt skeende, en betydande person inom matematiken eller ett historiskt matematiskt problem.
search